AD

Technical Report ARWSB-TR-15002

Modeling Damage in Composite Materials Using an
Enrichment Based Multiscale Method

Michael F. Macri
Andrew G. Littlefield

March 2015

ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER 3

Armaments Engineering & Technology Center P
Weapon Systems & Technology ’%s

Approved for public release; distribution is unlimited.




The views, opinions, and/or findings contained in
this report are those of the author(s) and should not
be construed as an official Department of the Army
position, policy, or decision, unless so designated
by other documentation.

The citation in this report of the names of
commercial firms or commercially available
products or services does not constitute official
endorsementby or approval of the U.S.
Government.

Destroy this report when no longer needed by any
method that will prevent disclosure of its contents or
reconstruction of the document. Do not return to
the originator.



REPORT DOCUMENTATION PAGE P o168

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From-To)
02/03/2015 Technical Report
4. TITLEAND SUBTITLE S5a. CONTRACT NUMBER

Modeling Damage in Composite Materials Using an Enrichment Based
Multiscale Method

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Michael F. Macri
Andrew G. Littlefield

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U.S. Army ARDEC REPORT NUMBER
Benet Laboratories, RDAR-WSB ARWSB-TR-15002

Waterdiet, NY 12189-4000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Fielded and future military systems are increasingly incorporating composite materials into their design. Many of these
systems subject the composites to physical trauma or environmental conditions that can cause microdamage leading to
variations of the mechanical properties on the global scale. For these applications, it is critical to dewvelop the ability to
accurately model the response of composite materials, to enable engineers to predict the reaction of the system. To
address this problem, a structural based enrichment approach is proposed, that allows macroscale computations to be
performed with the microstructural features explicitly considered. This strategy has an advantage in that the enriched
local function space may be easily varied from one element to the other allowing variances in the microstructure, such as
localized damage to the fibers.

15. SUBJECT TERMS
Composite Materials; Structural Based Enrichment Approach; Enrichment Based Multiscale Method

e ———————— e ——
16. SECURITY CLASSIFICATION OE: 17. LIMITATION OF J18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES Michael Macri
u 15
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPONE NUMBER (Include areacode)
u/u u u (518) 266-5158

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std Z39-18



1. REPORT DATE. Full publication date,
including day, month, if available. Must cite at
lest the year and be Year 2000 compliant, e.g.,
30-06-1998; xx-08-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such
as final, technical, interim, memorandum,
master's thesis, progress, quarterly, research,
special, group study, etc.

3. DATES COVERED. Indicate the time during
which the work was performed and the report
was written, e.g., Jun 1997 - Jun 1998; 1-10 Jun
1996; May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume
number and part number, if applicable. On
classified documents, enter the title classification
in parentheses.

5a. CONTRACT NUMBER. Enter all contract
numbers as they appear in the report, e.g.
F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers
as they appear in the report, e.g.
1F665702D1257.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the
report, e.g. AFOSR-82-1234.

5d. PROJECT NUMBER. Enter al project
numbers as they appear in the report, e.g.
1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as
they appear in the report, e.g. 05; RF0330201,
T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the
report. The form of entry is the last name, first
name, middle initial, and additional qualifiers
separated by commas, e.g. Smith, Richard, Jr.

7. PERFORMING ORGANIZATION NAME(S)
AND ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT
NUMBER. Enter all unique alphanumeric report
numbers assigned by the performing
organization, e.g. BRL-1234; AFWL-TR-85-
4017-Vol-21-PT-2.

9. SPONSORING/MONITORS AGENCY
NAME(S) AND ADDRESS(ES). Enter the name
and address of the organization(s) financially
responsible for and monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S).
Enter, if available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT
NUMBER(S). Enter report number as assigned
by the sponsoring/ monitoring agency, if
available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY
STATEMENT. Use agency-mandated

availability statements to indicate the public
availability or distribution limitations of the report.
If additional limitations/restrictions or special
markings are indicated, follow agency
authorization procedures, e.g. RD/FRD,
PROPIN, ITAR, etc. Include copyright
information.

13. SUPPLEMENTARY NOTES. Enter

information not included elsewhere such as:
prepared in cooperation with; translation of;
report supersedes; old edition number, etc.

14. ABSTRACT. A brief (approximately 200
words) factual summary of the most significant
information.

15. SUBJECT TERMS. Key words or phrases
identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter
security classification in accordance with
security classification regulations, e.g. U, C, S,
etc. If this form contains classified information,
stamp classification level on the top and bottom
of this page.

17. LIMITATION OF ABSTRACT. This block
must be completed to assign a distribution
limitation to the abstract. Enter UU (Unclassified
Unlimited) or SAR (Same as Report). An entry in
this block is necessary if the abstract is to be
limited.

STANDARD FORM 298 Back (Rev. 8/98)




ABSTRACT

Fielded and future military systems are increasingly incorporating composite materialsinto their design.
Many of these systems subject the composites to physical trauma or environmental conditions that can
cause microdamage leading to variations of the mechanical properties on the global scale. For these
applications, itis critical to develop the ability to accurately model the response of composite materials,
to enable engineers to predict the reaction of the system. To address this problem, a structural based
enrichment approach is proposed, that allows macroscale computations to be performed with the
microstructural features explicitly considered. This strategy has an advantage in that the enriched local
function space may be easily varied from one element to the other allowing variances in the
microstructure, such as localized damage to the fibers.
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INTRODUCTION

This presentation discusses the development of a technique to numerically model the reaction of
composite materials that are undergoing microdamage. Damage on the microstructure of composites,
such as microcracks and fracture, can have asignificanteffect the global response of the system. The most
notable effectisinthe change of material propertiesof the composite as microcracks formand propagate.
Though empirical data can be used to approximate the material properties for an ideal non-damaged
specimen [1], performing experimentation on damaged compositesand extracting a correlation between
microcrack size and or quantity to material properties can be extremely difficult.

One approach to extract material properties from a composite material without having to perform
experimental testing is a numerical approximation method, called the homogenization method [2]. This
method uses asymptotic expansions of field variables about macroscopic values and provides overall
effective properties as well as microscopic stress and strain values. A limitation with this method,
however, is that it assumes uniformity of the macroscopic fields within each representative volume
element(RVE). Hence, thismethod breaks down in critical regions of high gradients such as cracks. This
further complicatesits use formodeling microcrack phenomena, asitisinthe regionsof global cracks that
microcracking will be formed.

To overcome the drawbacks of the existing methods [3,4] proposed a structural based enrichment
method based on the principles of partition of unity which allows enrichment of the approximationspace
inlocalized sub domains using specialized functions that may be generated based on a priori information
regarding asymptotic expansionsof local stress fields and microstructure. One of the major advantages of
the partition of unity-based enrichment strategiesisthatthe enriched local function space may be easily
varied from one node to the other.

In this presentation we review the development of RVE models which will correlate composite material
properties, based on microcracking, and theirincorporation into amodified structural based enrichment
method to capture the microdamage effects. This approach can be used in regions where macrocracks
are assumed to have initiated. In the next section, we review the homogenization and enrichment
methods and discuss the implementation of damaged microstructures into the enrichment technique. In
section 3, we present an example which demonstrates the effectiveness of our approach.

EXPERIMENTATION

We have divided this section into three parts. Section 2.1 and 2.2 review the concepts of the
homogenization method and structural enrichment technique, respectively. Section 2.3 discusses the
implementation of damaged microstructures into the structural enrichment technique.

1
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Figure 1. Multiscale Homogenization Approach

Review of the Homogenization Approach

The homogenization theory [2], assumes thatafunction, composed of multiple scales, can be designated
as

frx) = f(x,y(x)) [1]

where xand yrepresentamacroscaleand microscale, respectfully (see Figure 1). The scales can be related
by a scale factor, y, such that

_X
Y=y 2]

A key feature of the homogenization approach is the assumption of local-periodicity on the microscale.
Thus, if we have a representative volume element (RVE), as shownin Figure 1, with a side length of Y we
can write

f(xoy) = f(xuy; +kY;) [3]

where kis the periodicinterval. The partial derivativeforthe function with respectto x can be simplified
to

O f(x0y;) = 0, f +v7'0,, f [4]

Using asymptotic expansion, we can write the displacement, stain and stress fields, with respect to the
scale factory, as:

2
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uf (x,y) =ud(xy) + yul (x,y) + 0(y*) [5a]

Siyj(x, Y=y e (y) + & (xy) + vl (x,y) +0(y?) [5b]
o (x,y) =y o (k) + 62 (x, ) +yo; (£ y) + 0% [5c]

where
Ui]]/' = Cijklgl)c/l [6]

is the constitutive relationship for the constituents of the RVE. In this presentation we will assume that
the constitutive behavior of each constituent of the RVE is linear elastic and known.

To determine the effects of the microstructure across the domain, we beginby substituting the asymptotic
expansions into the equilibrium equation and rearranging the terms to give us:

Y2 [(Cijkle;ll)'yj] +y7! [(Cijklglzll)’xj t (Cijklgl(c)l),yj]

[7]
+y° [(Cijklgl(c)l)x, + (Cijkzgz%z)y, _fiB] +0(y) =0
X j

In equation [7], Cj is the elasticcoefficients and fiB isthe body force. By settingeach ordertermto zero
we derive the following equations

uf (2, y) = uf (%) -
[Cijkl (Iklmn + l/)rs;mkl)]’y' =0 eQRVE -
[Cifklgronnx] - ﬂB =0 e (10]

,x]'

Equation [8] states that u? isonly a function of the macroscale. Equation [9] is the governing equation for
the microscale RVE, used to derive the effective elastic coefficients, where {3 .., is the symmetric part
of the spatial gradient of H> . defined as

1
S — S S
Yokt = E (Hmnl,yk + Hmnk,yl) (11]

H(y) isa Y-periodictensorthat relates the macroscale to the first order displacement perturbation term
u} (x,y), such that:

uf (2,Y) = Hpypy () €0 () [12]

Equation [10] is the governing equation for the macroscale. In the equation, C represents the effective
elastic coefficients and fB is the effective body force. They are respectively defined as:

3
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Cijk1= [ RVE LRVE Cijkl(lklmn + WS ) GQRVE [13]

- 1 [14]

B _ B
B = e fn _ [PoORVE

Structural Enrichment Method

Within this section we review the partition of unity paradigm and how itisimplemented, followed by the
derivation of the enrichment functions.

Interpolation Functions

The partition of unity paradigm requires that the sum of all functions ata given pointinadomainis equal
to one, such that

N
Z 00(x) = 1 [15]
i=1

In the above equation, (p,o is the /" partition of unity function and N is the total number of partition of
unity functions within the domain, Q. Thus, the sum of all the functions at a given point, x, within Q will
equal 1.

Based on this concept we define the global approximation space, for a method using interpolation

functions, as:

P H1(Q) [16]

where the superscripts h and p are the size of the element and the polynomial order, respectively. H is
the first order Hilbert space and I/Ih'p is the local approximation space at /, defined as:

AL span,, ¢ {p, (x)} € H'(B,NQ) [17]

In equation [17], Zis an index set, B; is the support for node / and p,,(x) is composed of polynomials or
otherfunctions. From the above equations we can write any function v within the global approximation
space as:

N
VPG = ) Y b (ay, VeV [18]
I=1me{
where
Ry (2) = @ (X)pp, (%) [19]

is the interpolation function at node /, corresponding to the m® degree of freedom, and @y, is the
associated degree of freedom.

4

Approved for public release; distribution is unlimited.



For FEA, the standard shape function, N, which can be referencedin numerous sources, satisfies the
partition of unity criteriafor go,o. For a typical finite element analysis, correlating the definition of a finite
element shape function to the interpolation function in equation [19], requires that p,, = span{1}.
Reference [5] discusses other partition of unity functions and basis’s that can be implemented.

Enrichment Functions

Inthe previous section we definedafunctioninthe global approximation space as the sum of the partition
of unity functions multiplied by a group of basis functions and associated degrees of freedom. Focusing
on the basis functions, p,(x), we state thatif an arbitrary functionisincludedinthe local basis of all nodes
within the domain and assuming &, = 6, VI then

ﬁ: Z (1510 (x)pm(x)azm = DPn (x) <§: ¢,0 (x)) =p, (%) [20]

I=1 meg I=1

Equation [20] demonstratesthatitis possible to exactly reproduceafunction over the entire domain. This
fundamental concept enables the consistency of the interpolation functions to be adjusted based on the
population of the basis functions. Thus, we can expend the basis functiontoinclude relevant functionsto
enforce aknown displacementfield. Recalling that the basis fora standard FEA analysisisp,, = span{1},
and incorporating the asymptoticresponse about acrack tip, acommon enrichment technique is to adjust
the basis to

P, (x) = span{1,+7} [21]

Using this adjusted basis within the region of a crack tip will enable the interpolation functions to

reproduce the V7 field. If the crack tip is not at the origin of r the degree of freedom associated with the
enrichment function should solve to zero, thus removing the effects of the enrichment term on the
displacement field.

To derive the structural based enrichmentfunction, we begin by examining the asymptotic expansion of
the displacement field givenin equation [5a]. Substituting equations [8] and [12] into [5a] and assuming
O(y?) approximation gives us:

u} (y) = () + (i 0)E9na () [22]

For a single-scale problem, we define the displacement field, assuming linear consistency in 2D, as

N

uf () = w(x) = Z Z 1 ()P (X) [23]

I=1 me(

where ¢ and p,, are N,and p,, = span{1}.

To perform a multiscale analysis we need to incorporate the second term on the right hand side of
equation [22]. We focus on the Y-periodictensor, H*(y). Recalling that yis afunction of x, equation [2] and
assuming H*(y(x)) is the dominant term, we can write the relation:

5
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( mnl(y)gmnx(x) Zd)l (x) mnl(y(x))ﬂlmni [24]
Substituting [23] and [24] into [22] gives us:

W) = Z D @D Dy + Z 07 G Hii (Y () By 251

I=1 me(

Rearranging [25] and incorporating the degrees of freedom vector 8 into a reduces [25] to

@ =) SO D 126)

I=1 me(

The enrichment function can be defined as:
Foni (%) = Hypi (v (1)) [27]

One significant observation is that incorporating the enrichment function requires that the basis be
dependent on the coordinate direction. For example, a two dimensional finite element analysis would
have the enriched basis in the x;-direction, as

P1 = span{l, Hy, (y(x)),Hyy, (¥ (2)), H (¥ ()} [28]
while for the x,-direction the enriched basis is
Pz = span{l, Hy, (y(x)), Hzy, (¥ (), HS,, (v ()} [29]
In generic form for a finite element simulation, the basis can be written as
Pmi = span{l, Fpp; ()3 [30]

Implementation the Multiscale Enrichment Technique

The approach to implementing structural based enrichment varies depending on the governing method.
In this presentation we will focus in the FEA approach. Reference [3] gives complete details on the
implementation of the multiscale enrichment into FEA. In this section we will briefly review how the
algorithm is applied.

The analysis is based on a homogenization-like integration (HLI) scheme [3]. The sol’n requires the
enrichmentfunction, calculatedusing equation[9], and the material properties, which are only known on
the microscale, y. To implement this technique and resolve the aforementioned issue, integration will be
performed on an RVE transformed to the macroscale, x, coordinate system. The HLI scheme, shown in
Figure 2,isbased onthe assumption thatthere isasignificant deference between the two scalesand that
the Gauss points used for FEA are sparse with respect to the size of the RVE. In this approach, an RVE is
centered on each Gauss point within macroscale problem. Anintegrand, /, onthe macroscale is replaced
with the following

6
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Nguass Nguass

1 —
I=Jﬂ JvoQ = Z VVi]i’v'(xLGP) = Z M/i]im_[(—)RVEv(x)aQiRVE (31]

Where v isan arbitrary function, x¢% is the i** Gauss point, 2FVE is the domain of an RVE centered on the
ith Gauss point, Jis the Jacobian and W;is aweight associatedwith the /" Gauss point. [3] has demonstrated
that the accuracy of HLI improves with decreasingsize of the RVE. Thus, this implementation works well
when the difference in scales is significant. However, as the scales become closer and the therefore the
volume of the RVE increases, equation [31] will develop convergence errors.

Figure 2. Implementation of multiscale enrichment into FEA

Flow Chart of Structural Based Enrichment Algorithm

Inthissection, we discuss the algorithm forthe structural basedenrichment method depicted in Figure 3.
We begin the analysis by deriving the H*from the RVE and material properties provided. H is theninputted
into the macroscale structural problem which solves for the displacement, stress and strain fields.

or

Figure 3. Flow Chart of Structural Enrichment Approach

Macro-Scale
Solve Structural problem
s 5 _ {
[C;.-;-;'E;-h- ]1 +f7 =0

D, = .spm-:{l: H'(y(x ))} ]

Micro-Scale
Solve Structural problem

[C;.-'h" (I ki T W:;n;-; ]] =0

7
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Implementation of Damaged Microstructure

We now focus, in this section, on the RVE and how microdamage can be incorporated into the model. For
many applications the material used in the multiscale model is some type of fiber composite, such that
the microstructure can be presented as a fiberwithin amatrix (see Figure 4a) fora 2D application,anda
section of the fiber weave (see Figure 4b) for 3D simulations.

(@)

Figure 4. Microstructures for a Fiber Composite

Fornormal conditions,these RVEs can be used to represent the microstructure; however, these multiscale
methods are specifically designed for critical regions, such asin the vicinity of aglobal crack, where fiber-
matrix is likely to be damaged on the microscale as well.

Figure 5. Damaged Matrix Microstructures for a Fiber Composite

To account for microdamage, the RVEs are modified to incorporate varying levelsof cracks. Figure 5 gives
examples of several cases where cracks are imbedded into the microstructure matrix.

The cracks on the RVE are modeled as geometric damage in the simulation, such that there is no
connectivity across acrack on elements withinthe RVE neighboring the crack. As a pre-step to solving the
global problem, we solve equation [9] on the damaged RVE to produce a set of damaged enrichment
functions, HyP. The damaged enrichment functionsare then incorporated into model withinthe vicinity
of a global crack, see Figure 6.

8
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|pm = sparz{l,HSH

ﬁ\ | p, = span{l,HS_D (X)}I \

(
L

Figure 6. Critical Region Around Global Crack

The algorithm forthe modified enrichment method is given pictorially in Figure 7. We begin the analysis
by deriving the H*and H*? from the RVE and material properties provided. HS and HS~Pare then inputted
into the macroscale structural problem, in the form of enrichment functions. The enrichment functions
derived from the damaged RVE, H5~P, are applied to elements within the vicinity of the critical region,
while the remaining elements within the global model are enriched with functions derived from the
standard RVE, HS. The profile of the critical region is dependent on criteria provided by the modeler.

QF Macro-Scale
Solve Structural problem
' [cpes], + 77 =0
( Micro-Scale
Solve Erru.,rum.fpmb.fem
) . )
’. [C.E[I clmn y/?}mi]] ; =0 %pm = span LH ( ( ))j]
( 1
n I%}H(Imﬁﬂ mﬂf ] ﬂ - Span{l H ( ( ))j

Figure 7. Critical Region Around Global Crack
RESULTS

We examine a two-dimensional cross section of a damaged composite wafer, depicted in Figure 8,
containing a center crack. A pressure load is applied to the upper and lower surfaces to force open the
crack and a temperature change is implemented to induce thermal stress. The additional enrichment
functions used to capture the thermal stress is reviewed in [5]. In this example we assume plane stress
conditions and examine the upperright quadrant of the cross sectional area. We assume the composite
is composed of graphite fibers, all orientated perpendicularto the cross section, within an epoxy matrix.
The material properties are given in Table 1. The RVEs, are modeled using 500 quadratic 2" order
elements, where the enrichment functions generated from the damaged RVE’s are applied to the global
region encompassed by the yellow boundary and the enrichment function generated from the standard

9
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RVE isapplied throughout the remainder of the model. The boundary conditions on the global model are
a 40 MPa pressure pullingonthe upperand lower surfaces of the wafer, and a heat source increasing the
upper and lower surfaces to 1080°C. The results are compared to a fine mesh composed of 1.8e6
quadratic 2" order elements modeled down to the microscale.

Table 1. Material Properties of RVE

Material Elastic Modulus | Poisson’s Thermal Conductivity | Coefficient of Thermal
(MPa) Ratio (mW/(mmC)) Expansion {C?)

Epoxy 3450 0.35 4.47 5.4x10°

Graphite | 700 0.485 2.4 1.2 x10°®

X \,\’h‘ ,5 lezgt P.-a1u||11)= 40MPa

1

sheet™ 1028°C _b\ 1 (.06mm

Figure 8. Damaged Composite Sample

(b) o ()

Figure 9. RVE Damaged Orientations

We begin the analysis by examining several crack orientations shown in Figure 9. For this analysis, the
homogenization simulation is run using 900 quadratic 2" order elements, with the effective material
properties generated from adamaged RVE applied to the critical region aroundthe crack. To compare the
orientations, we examine the strain energy resulting from the simulation with respect to the results from
the fine mesh which produced a strain energy of 882.4 MPa. Table 2 shows the resultingrelativeerrorin

10
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the strain energies. The results show that the orientation does not make significant difference in error
generated. The RVE containing diagonal cracks with twice the crack length as the other orientations
(Figure 9e) produced slightly more accurate results.

Table 2. Strain Energy Errors

Technique Strain Energy (MPa) Error (%)
Fine Mesh 882.4 -
Figure 9a 213.2 75.8
Figure 9b 213.3 75.8
Figure 9c 214.0 75.7
Figure 9d 214.0 75.7
Figure 9e 216.8 75.4

We nextexamine both the homogenization and the enrichment techniques using 900 quadratic 2" order
elements, again examining the strainenergy of the model. Table 3shows that the homogenization method
usingthe damaged RVE doesnot show much improvementin the strain energy calculations, withlessthan
a % difference between the two simulations. Using the enrichment method without any damaged RVEs
still reduced the error by 6% overthe homogenization approaches. When using the enrichment method
along withthe damaged RVE reduced the error to 60.4%, a 15% improvement overthe homogenization
method.

Table 3. Strain Energy Errors

Technique Strain Energy (MPa) Error (%)
Fine Mesh 882.4 -
Homogenization w/o 213.1 75.8

Damaged RVEs

Homogenization with 216.8 75.4
Damaged RVEs

Enrichment w/o 273.5 69.0
Damaged RVEs

Enrichment with 349.7 60.4
Damaged RVEs
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CONCLUSIONS

In this paper we have derived the enrichment functions for microdamage in a heterogeneous medium.
This method uses a structural based enrichment technique, allowing macroscale computations to be
performed withthe microstructural features explicitly considered.In section three we have demonstrated
that usingthe enriched approach with damaged RVEs reduces the error, forthe problem shown, by 15%.
We are continuing this research for dynamic problems and are expectingto compare the results with
experimental data.
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